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Power System Analysis-2

Solution to Question Bank

Module 1

1. a) Define the following and give an illustrative example: i) tree and co-tree ii) Basic
loops iii) Basic cut sets iv) primitive network v) Bus frame of reference.
June 2015, Dec 2016, Dec 2015, June 2017

The geometrical interconnection of the various branches of a network is called the topology
of the network. The connection of the network topology, shown by replacing all its elements
by lines is called a graph. A linear graph consists of a set of objects called nodes and
another set called elements such that each element is identified with an ordered pair of nodes.
An element is defined as any line segment of the graph irrespective of the characteristics of
the components involved. A graph in which a direction is assigned to each element is called
an oriented graph or a directed graph. It is to be noted that the directions of currents in
various elements are arbitrarily assigned and the network equations are derived, consistent
with the assigned directions. Elements are indicated by numbers and the nodes by encircled
numbers. The ground node is taken as the reference node. In electric networks the
convention is to use associated directions for the voltage drops. This means the voltage drop
in a branch is taken to be in the direction of the current through the branch. Hence, we need
not mark the voltage polarities in the oriented graph.

Connected Graph :This is a graph where at least one path (disregarding orientation) exists
between any two nodes of the graph. A representative power system and its oriented graph
are as shown in Fig 1, with:

e = number of elements = 6

n = number of nodes = 4

b = number of branches =n-1=3

| = number of links =e-b =3

Tree = T(1,2,3) and

Co-tree = T(4,5,6)

Sub-graph :sG is a sub-graph of G if the following conditions are satisfied:
sG is itself a graph

Every node of sG is also a node of G

Every branch of sG is a branch of G

For eg., sG(1,2,3), sG(1,4,6), sG(2), sG(4,5,6), sG(3,4),.. are all valid sub-graphs of
the oriented graph of Fig.1c.

Loop :A sub-graph L of a graph G is a loop if
L is a connected sub-graph of G
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Precisely two and not more/less than two branches are incident on each node in L

In Fig 1c, the set{1,2,4} forms a loop, while the set{1,2,3,4,5} is not a valid, althoughthe
set(1,3,4,5) is a valid loop. The KVL (Kirchhoff*s Voltage Law) for the loop isstated as
follows: In any lumped network, the algebraic sum of the branch voltagesaround any of the
loops is zero.

()
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Fig 1a. Single line diagram of a power system
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Fig 1b. Reactance diagram
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Fig 1c. Oriented Graph

Cutset :It is a set of branches of a connected graph G which satisfies the following
conditions :

The removal of all branches of the cutset causes the remaining graph to have two separate
unconnected sub-graphs.

The removal of all but one of the branches of the set, leaves the remaining graph connected.
Referring to Fig 1c, the set {3,5,6} constitutes a cutset since removal of them isolates node 3
from rest of the network, thus dividing the graph into two unconnected subgraphs. However,
the set(2,4,6) is not a valid cutset! The KCL (Kirchhoff*s Current Law) for the cutset is
stated as follows: In any lumped network, the algebraic sum of all the branch currents
traversing through the given cutset branches is zero.

Tree: It is a connected sub-graph containing all the nodes of the graph G, but without any
closed paths (loops). There is one and only one path between every pair of nodes in a tree.
The elements of the tree are called twigs or branches. In a graph with n nodes,

The number of branches: b =n-1 (1)
For the graph of Fig 1c, some of the possible trees could be T(1,2,3), T(1,4,6), T(2,4,5),
T(2,5,6), etc.

Co-Tree :The set of branches of the original graph G, not included in the tree is called the
co-tree. The co-tree could be connected or non-connected, closed or open. The branches of
the co-tree are called links. By convention, the tree elements are shown as solid lines while
the co-tree elements are shown by dotted lines as shown in Fig.1c for tree T(1,2,3). With e as
the total number of elements,

The number of links: | =e—b=e—-n+1(2)

For the graph of Fig 1c, the co-tree graphs corresponding to the various tree graphs are as
shown in the table below:
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Tree T(1,2.3) | T(1.4,6) | T(24.,5) | T(2,5.6)
Co-Tree | T(4,5.6) | T(2,3,5) | T(1,3.6) | T(1.3.4)

Basic loops: When a link is added to a tree it forms a closed path or a loop. Addition of each
subsequent link forms the corresponding loop. A loop containing only one link and
remaining branches is called a basic loop or a fundamental loop. These loops are defined for
a particular tree. Since each link is associated with a basic loop, the number of basic loops is
equal to the number of links.

Basic cut-sets: Cut-sets which contain only one branch and remaining links are called basic
cutsetsor fundamental cut-sets. The basic cut-sets are defined for a particular tree. Since each
branch is associated with a basic cut-set, the number of basic cut-sets is equal to the number
of branches.

2. Derive an expression for obtaining Y-bus using singular transformations.
June 2016,Dec 2016, Dec.2015, June 2017

In the bus frame of reference, the performance of the interconnected network is described by
nindependent nodal equations, where n is the total number of buses (n+1nodes are present,
out of which one of them is designated as the reference node).

For example a 5-bus system will have 5 external buses and 1 ground/ ref. bus). The
performance equation relating the bus voltages to bus current injections in bus frame of
reference in admittance form is given by

IBUS = YBUS EBUS

Where EBUS = vector of bus voltages measured with respect to reference bus
IBUS = Vector of currents injected into the bus
YBUS = bus admittance matrix

The performance equation of the primitive network in admittance form is given by
i+j=[ylv

Pre-multiplying by At (transpose of A), we obtain

Ati+Atj=At[y]v
Ati=0,
since it indicates a vector whose elements are the algebraic sum of element currents incident
at a bus, which by Kirchhoff™s law is zero. Similarly, At j gives the algebraic sum of all
source currents incident at each bus and this is nothing but the total current injected at the
bus. Hence,

At j=IBUS
we have, IBUS = At [y] v
However, we have
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v =A EBUS
And hence substituting in equation we get,

IBUS = At [y] A EBUS
we obtain,

YBUS = At [y] A
The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a singular
transformation of the primitive admittance matrix [y]. The bus impedance matrix is given by

ZBUS = YBUS™

Note: This transformation can be derived using the concept of power invariance, however,
since the transformations are based purely on KCL and KVL, the transformation will
obviously be power invariant.

Given that the self impedances of the elements of a network referred by the bus
incidence matrix given below are equal to: Z1=72=0.2, Z3=0.25, Z4=75=0.1 and
Z6=0.4 units, draw the corresponding oriented graph, and find the primitive network
matrices. Neglect mutual values between the elements.

-1 0 0
0 -1 0
A=| 0 0 -1
1 -1 0
0 1 -1
1 0 -1

Dec 2016

Solution:
The element node incidence matrix, A" can be obtained from the given A matrix, by pre-
augmenting to it an extra column corresponding to the reference node, as under.
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1 -1 0 0

1 0 -1 0

A= 1 0 0 -1
0 -1 0

0 0 1 -1

0 0 -1

Based on the conventional definitions of the elements of A", the oriented graph can be
formed as under:
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Fig. E4 Oriented Graph

Thus the primitive network matrices are square, symmetric and diagonal matrices of
order e=no. of elements = 6. They are obtained as follows.
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0.2 0 0 0 0 0
0 0.2 0 0 0 0
[z]=| O 0 0.25 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.4
And
5.0 0 0 0 0 0
0 5.0 0 0 0 0
ly] = 0 0 4.0 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 2.5

4. What is a primitive network? Give the representation of a typical component and

arrive at the performance equations both in impedance and admittance forms.

PRIMITIVE NETWORKS

Dec.2015,June 2016, June 2017

So far, the matrices of the interconnected network have been defined. These matrices contain
complete information about the network connectivity, the orientation of current, the loops
and cutsets. However, these matrices contain no information on the nature of the elements
which form the interconnected network. The complete behaviour of the network can be
obtained from the knowledge of the behaviour of the individual elements which make the
network, along with the incidence matrices. An element in an electrical network is
completely characterized by the relationship between the current through the element and the

voltage across it.
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General representation of a network element: In general, a network element may contain
active or passive components. Figure 2 represents the alternative impedance and admittance
forms of representation of a general network component.

E,. P s Ep P

@ (ipg+ jpa

Vg = Ep - Eq Ypq

Ipq Ipq

Eq q v Eq q

Fig.2 Representation of a primitive network element (a) Impedance form (b)
Admittance form

The network performance can be represented by using either the impedance or the
admittance form of representation. With respect to the element, p-q, let,

vpg = voltage across the element p-q,

epq = source voltage in series with the element p-q,

ipg= current through the element p-q,

jpg= source current in shunt with the element p-q,

zpg-= self impedance of the element p-q and

ypg= self admittance of the element p-g.

Performance equation: Each element p-q has two variables, Vpq and ipg. The performance
of the given element p-q can be expressed by the performance equations as under:

vpg + epq = zpgipq (in its impedance form)
ipg + jpg = ypgvpqg (in its admittance form)

Thus the parallel source current jpg in admittance form can be related to the series source
voltage, epg in impedance form as per the identity:

ipa = - ypaepq

A set of non-connected elements of a given system is defined as a primitive Network and an
element in it is a fundamental element that is not connected to any other element. In the
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equations above, if the variables and parameters are replaced by the corresponding vectors
and matrices, referring to the complete set of elements present in a given system, then, we
get the performance equations of the primitive network in the form as under:

v+e=[z]i

i+j=[ylv

Primitive network matrices:

A diagonal element in the matrices, [z] or [y] is the self impedancezpg-pq or self admittance,
yPg-pg. An off-diagonal element is the mutual impedance, zpg-rs or mutual admittance, ypg-
rs, the value present as a mutual coupling between the elements p-q and r-s. The primitive
network admittance matrix, [y] can be obtained also by inverting the primitive impedance
matrix, [z]. Further, if there are no mutually coupled elements in the given system, then both
the matrices, [z] and [y] are diagonal. In such cases, the self impedances are just equal to the
reciprocal of the corresponding values of self admittances, and vice-versa.

5. For the sample network-oriented graph shown in Fig.below by selecting a tree,
T(1,2,3,4), obtain the incidence matrices A and A” . Also show the partitioned form
of the matrix-A.

Fig. Sample Network-Oriented Graph

June 2017,June 2015, Dec 2015, June 2016
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Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two submatrices
as under:
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Ay = branches| 2 0 -1 0 0
3 0o 0 0 -1
4 0O 0 -1 1|
buses
I\b 1 2 3 4]
_ 5 0 1 -1 0
A,=links|
6 1 -1 0 0
70 1 0 -1

6. For the sample-system shown in Fig. E3, obtain an oriented graph.
Byselecting a tree, T(1,2,3,4), obtain the incidence matrices A andA”™ . Also
show thepartitioned form of the matrix-A.

()
._
@ 9 6 8

Fig. E3a. Sample Example network
June 2017, June 2015

Consider the oriented graph of the given system as shown in figure E3b, below.

Departmentof EEE, SIBIT Page 11



Power System Analysis-2 I 18EE71

Fig. E3b. Oriented Graph of system of Fig-E3a.

Corresponding to the oriented graph above and a Tree, T(1,2,3,4), the incidence matrices °
and A can be obtained as follows:

em|{O(1[2]3]|4 eb| 1|23 |4
1|1 |- 1 |-l
2 |1 -1 2 -1

A= 31 1 A=]| 3 1
4 |1 -1 4 |
5 | -1 5 I ]-1
6 -1 6 11
7 1 |-1 701 |-1
8 -1 1 8 - 1
9 -1 1 9 | -1 l

Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two submatrices
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as under:
eb| 1 ]2]3 4 eb| 1 ]2 (3|4
1 | -1 5 1] -1
A= 2 -1 Aj=| 6 -1 1
3 I 7 1 1]-1
1 N 8 § |
9 | -1 1

7. For the network of Fig E8, form the primitive matrices [z] & [y] and obtain
the bus admittance matrix by singular transformation. Choose a Tree
T(1,2,3). The data is given in Table. June 2016

) ()

?

2 5
. —
@"; 1 / @
--u.."-n. ___________ __.- ______________ a
4
Fig System

Elements | Self impedance | Mutual impedance

1 0.6 -
2 j 0.5 j 0.1(with element 1)

3 j0.5 -
4 j0.4 j 0.2 (with element 1)

5 i0.2 -
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Solution:

The bus incidence matrix is formed taking node 1 as the reference bus.

lyl=

-1 0 0
0O -1 0
A=10 1 -1
-1 0 0
10 1]
The primitive incidence matrix is given by
- j0.6 jO.1 0.0 0.2 0.0 ]
jo.1 j0.5 0.0 0.0 0.0
z]=] 0.0 0.0 jO.5 0.0 0.0
jO.2 0.0 0.0 ;04 0.0
00 00 00 00 ;0.2]
The primitive admittance matrix [y] = [z]-1 and given by,
— j2.0833  j0.4167 0.0 Jj1.0417
jo.4167 —j2.0833 0.0 — j0.2083
0.0 0.0 - Jj2.0 0.0
J1.0417  —50.2083 0.0 - j3.0208
0.0 0.0 0.0 0.0

The bus admittance matrix by singular transformation is obtained as

0.0
0.0
0.0
0.0

— j5.0

Departmentof EEE, SIBIT
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— j8.0208  j0.2083 5.0
Yeus=A'[y]A = | jO.2083 — j4.0833 2.0
j5.0 2.0 =370

j0.2713  jO.1264  j0.2299
= | jO.1264 j0.3437 j0.1885
j0.2299  j0.1885  j0.3609

q
Zgus = YBus

8. Derive the expression for Yy,s using Inspection method. June 2015,June 2016

Consider the 3-node admittance network as shown in figure5. Using the basic
branchrelation: | = (YV), for all the elemental currents and applying Kirchhoff™s CurrentLaw
principle at the nodal points, we get the relations as under:

Atnode 1: 11 =Y1V1 + Y3 (V1-V3) + Y6 (V1 - V2)

At node 2: 12 =Y2V2 + Y5 (V2-V3) + Y6 (V2 — V1)
At node 3: 0= Y3 (V3-V1) + Y4V3 + Y5 (V3 - V2)

AR
Dl o F ®

v —

73 s
5 ) RZ Ya. Iy

Fig.Example System for finding YBUS

These are the performance equations of the given network in admittance form and
they can be represented in matrix form as:
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[, = (Y14Y354Ys) Y -Y; Vi
I, = -Yg (Yo+Ys+Ys) -Ys Vi
0 = -Y; -Y5 (Y:+Y4+Y5) Vs

In other words, the relation of equation (9) can be represented in the form

IBUS = YBUS EBUS

Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and
busvoltage vectors respectively.By observing the elements of the bus admittance matrix,
YBUS of equation (13), it isobserved that the matrix elements can as well be obtained by a
simple inspection ofthe given system diagram:

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix,YBUS, is equal to
the sum total of the admittance values of all the elementsincident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yij) of the bus admittancematrix, YBUS,
is equal to the negative of the admittance value of theconnecting element present between
the buses | and j, if any.This is the principle of the rule of inspection. Thus the algorithmic
equations for therule of inspection are obtained as:

Yii=Syij(=12,......n)
Yij=-vij(j=12,.......n)

For i = 1,2,....n, n = no. of buses of the given system, vyij is the admittance of
elementconnected between buses i and j and vyii is the admittance of element
connectedbetween bus i and ground (reference bus).

Bus impedance matrix

In cases where, the bus impedance matrix is also required, it cannot be formed bydirect
inspection of the given system diagram. However, the bus admittance matrixdetermined by
the rule of inspection following the steps explained above, can beinverted to obtain the bus
impedance matrix, since the two matrices are interinvertible.

Note: It is to be noted that the rule of inspection can be applied only to those powersystems
that do not have any mutually coupled elements.

Examples on Rule of Inspection:

Example :Obtain the bus admittance matrix for the admittance network shown aside by the
rule of inspection
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16 -8 -4
Ypus=j|-8 24 -8
-4 -8 16
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1. Obtain the general expressions for Z,,s building algorithm when a

branch is added to the partial network.
June 2016
ADDITION OF A BRANCH
Consider now the performance equation of the network in impedance form with the added
branch p-q, given by

El PZII Zl: le Zlm Zlq-—llq
E,| |Zu Zn - 4y, 24y, Zy |l
Eﬂ = Zl" Zrl Z;'," Zr"" Zm Ir'
E’" . Z"ll Z"l: g Z"lp s Z""" Z"l(l l’"
_Eq | LZ‘II Z'/Z Zw' Z./m 99 J| “q |

It is assumed that the added branch p-q is mutually coupled with some elements of the
partial network and since the network has bilateral passive elements only, we have

Vector ypg-rs is not equal to zero and Zij= Zji" i,j=1,2,...m,q

To find Zqi:

The elements of last row-q and last column-q are determined by injecting a current of 1.0 pu
at the bus-i and measuring the voltage of the bus-q with respect to the reference bus-0, as
shown in Fig.2. Since all other bus currents are zero, we have from (11) that

Ek=2zkili=zZki"k=1,2,...i......p,....m, q
(13)
Hence, Eq = Zqi ;Ep=Zpi .........

Also, Eq=Ep -vpq ; so that Zqi = Zpi - vpq " i =1, 2,...i....... p,....m, _(
(14)

To find vpQ:
In terms of the primitive admittances and voltages across the elements, the current through
the elements is given by
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L _ Ypapg  Ypars | Vog
) }‘r.*.;pq }‘rs.rs Vra
|
2 _|
Partial
Network
v
-+ P >
p———
q
i
ZBUS
[i=1pu
m —
0 | T Ref.

Fig.2 Calculation for Zqi
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where i is current through element p-g

i,.is vector of currents through elements of the partial network
v,, is voltage across element p-g

Y pg.pq 18 self —admittance of the added element

y ... is the vector of mutual admittances between the added elements p-g and

._‘pq.rs
elements r-s of the partial network.

v, is vector of voltage across elements of partial network.

Yys.pg 18 transpose of y ..

3

Jrs.rs

is the primitive admittance of partial network.

Since the current in the added branch p-q, is zero. i, = 0. We thus have from (15),

p

+¥,.. V. =0 (16)

1 —_— N )
,Pq )P‘LPQ‘ rq s Pq.rs - rs
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3 —

Y pgrs Vis

ing. y —-—--—"— - 3
Solving, v, § o1
Y pa.pq
3 ypq.rs (Er - E.s- )
[ i
2 pq.pq

Using (13) and (17) in (14), we get

Z =7 +2C_T i=12...0miEq

To find zqq:

(18)

The element Zyq can be computed by injecting a current of Ipu at bus-q, I = 1.0 pu.

As before, we have the relations as under:

Ex = Ziq Iq= Ziq VK= 2w dnniPasiiiy g
Hence, Eq=Z4q: Ep=7Zpq ; Also, Eq=E; - Vpq; S0 that Zgq = Zpq - Vg

(19)
(20)

Since now the current in the added element is ipq = —Iq =—1.0, we have from (15)

Log = Ypa.paVpa T Y pgrsVes = =1
Y
Solving, v, =—142%H2 "%
& Vpg ,
Y pa.rq
Y pars\E, —E,)
su s J pq.rs r s
Voo = 1+ 5
Y pa.pq

Using (19) and (21) in (20), we get

I 4 I+.\_’pq.rs(zrq_z_xq)

+
99 Pa y
7 pg.pq

Special Cases

The following special cases of analysis concerning ZBUS building can be considered with

respect to the addition of branch to a p-network.
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Case (a): If there is no mutual coupling then elements of y

Y pgrs are zero. Further, if p
is the reference node, then E,=0. thus,

Zpyi=0 i=12..m:i#gq
And Zpq=0.
Hence, from (18) (22) Zgi=0 i=12.... m.i#q
And Z = Zpara \(23)

Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18)

and (22). we again have,

fofr = Zm * Zpg.pg (24)

2. Obtain the general expressions for Z,,s building algorithm when a link is
added to the partial network. Dec 2016

ADDITION OF A LINK

Consider now the performance equation of the network in impedance form with the added
link p-1, (p-1 being a fictitious branch and | being a fictitious node) given by

El Zu ZJE le Zlm Zlf,r“‘rl_
Ez Zzl Zzz Zzp sz qu 12
EP = Zpl ZP3 ZPP me Zp\q IIP (25)
" ml Zm? T mp o TR mg m
_E; | _Zu Zm Zn‘ Z;m Zu __Is_

It is assumed that the added branch p-q is mutually coupled with some elements of the
partial network and since the network has bilateral passive elements only, we have

Vector ypq.i is not equal to zero and Z;= Z; Vij=12, ..k (26)

Departmentof EEE, SIBIT Page 22



Power System Analysis-2

|18EE71

To find Zli:

The elements of last row-1 and last column-I are determined by injecting a current of 1.0 pu
at the bus-i and measuring the voltage of the bus-q with respect to the reference bus-0, as
shown in Fig.3. Further, the current in the added element is made zero by connecting a
voltage source, el in series with element p-g, as shown. Since all other bus currents are zero,

we have from (25) that

Ex=Zx i =Zy ¥ E= L2 dusa Pty | (27)
Hence, ei1=E =75 . Ey=Zpi: Ep=Zp .........
Also, e =E;-Eq-vpq:
So that Zy; = Zyi- Zgi - Vpq V i=1,2,...i....p....qQ,....m, # (28)

To find vpqQ:

In terms of the primitive admittances and voltages across the elements, the current through

the elements is given by

"Ip;" _ j}.ﬁ__pf’
by —1;‘.\‘, pl

(29)

-Ypf’. rs 1 "_;;f
- ;':.'. rs L r\

-

Partial
Network

ZBUS

] RS |
2 |
—15
Vp1
| €]
i
Li=1pu
m RS |
O T T " Ref.

Fig.3 Calculation for Zj
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where i, is current through element p-g

i is vector of currents through elements of the partial network

rs

v, 1s voltage across element p-q

Y 1.t 18 self —admittance of the added element

Y 1. is the vector of mutual admittances between the added elements p-g and

elements r-s of the partial network.

v, is vector of voltage across elements of partial network.

Yys.p 18 transpose of y ;.

¥, 18 the primitive admittance of partial network.

Since the current in the added branch p-1. is zero. i , = 0. We thus have from (29).

p
ipl = ypl‘plvpl R ypl.rs‘jr: =0 (30)
. )_’pl r.\‘?rs
Solving, v, =———  or
.Vpl.pl
y rc(Er = —E—s .
va:_.pl.. ) (3])
ypl.pl
However,
)_‘,pl.rs a y_‘pq.rs
And Yoot = Yoq.pa (32)
Using (27), (31) and (32) in (28), we get
y rs (Zri _Zsi)
Z,=Z,-Z,+ Yea. i=12..mi#l (33)
Y pa.ra
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To find Zy:
The element Z; can be computed by injecting a current of Ipu at bus-1, I; = 1.0 pu. As

before, we have the relations as under:

Ex=Zuli=Zy ¥ k=102 e Pive sliossa il d (34)
Hence, e;=Ei=Zy; Ey =7, ;

Also, e=Ep-Eq-vp:

SothatZy =Zy - Zg - vp V i=1,2,...i....p,...q,....m, # (35)

Since now the current in the added element is i, = -1, =—1.0, we have from (29)

lpl = -vpl.plvpl + ypl.rsvrs ==

: Ypi.rsY
Solving, v, S e BINE

ypl.pl

:_l+-‘/_‘pl.rs(Er—Es) (36)

ypl.pl

Vv

pl

However,

ypl.rs = ypq.rs

And y y

7 —
Zpl.pl — 7 pq.pq

(37)

Using (34), (36) and (37) in (35), we get
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1+ qu.,.s(z,., —Z,-1)

~Zy+— » (38)
y

Y pq.pq

Zy=2%

pl

Special Cases Contd....

vi cial case 'Sl 7 us building c > considere
The following special cases of analysis concerning Zgys building can be considered

with respect to the addition of link to a p-network.

Case (c): If there is no mutual coupling, then elements of y,  are zero. Further, if p
is the reference node, then E,=0. thus,

Z,=—Z,, i=12..mi+l

qi?

Zy=—2,+Zp (39)
From (39), it is thus observed that, when a link is added to a ref. bus, then the situation is
similar to adding a branch to a fictitious bus and hence the following steps are followed:
1. The element is added similar to addition of a branch (case-b) to obtain the new matrix of
order m+1.
2. The extra fictitious node, | is eliminated using the node elimination algorithm.

Case (d): If there is no mutual coupling, then elements of pqgrsy, are zero. Further, if p is not
the reference node, then

Ly = Zpi- Ly

In=Zp—Zq—Zpqpq
= Zpp+ Zgq— 2 Zpq+ Zpgpq (40)

3. Prepare the Zy, for the system shown using Zy,s building algorithmFor the positive
sequence network data shown in table below, obtain ZBUS by building procedure.

_ Pos. seq.
Sl No. P-4 reactance
(nodes) ]
in pu
1 0-1 0.25
2 0-3 0.20
3 1-2 0.08
4 2-3 0.06 June 2015, Dec 2016
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Solution:

The given network is as shown below with the data marked on it. Assume the elements to be

added as per the given sequence: 0-1, 0-3, 1-2, and 2-3.

0.06

)

0.20

I3

4

1

L

o)

Fig. E1: Example System

(.25

2

0.08

)

Consider building ZBUS as per the various stages of building through the consideration of
the corresponding partial networks as under:
Step-1: Add element-1 of impedance 0.25 pu from the external node-1 (g=1) to internal ref.

node-0 (p=0). (Case-a), as shown in the partial network;
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P-networls

Zaus” =[] .25

©

1
Zpus'= 11025

Step-2: Add element-2 of impedance 0.2 pu from the external node-3 (q=3) to internal ref. node-
0 (p=0). (Case-a), as shown in the partial network;

P-networlk @

Z s @ 0.2 @

1 3

5 1]0257 0
T = =

BUs 0 102

Step-3: Add element-3 of impedance 0.08 pu from the external node-2 (q=2) to internal node-1
(p=1). (Case-b), as shown in the partial network;
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P-network 0.08
Z pus N @
i 3 2
1 110250 0 | 0.25
Zpus™' = 30 0 (02 0
210251 0 | 0.33

Step-4: Add element—4 of impedance 0.06 pu between the two internal nodes, node-2
(p=2) to node-3 (g=3). (Case-d), as shown in the partial network;

P-rietwork @ 0.06

Z Bus

1 3 2 l
1] 0.25 0 0.25 | 0.25
Zpusd = 3 0 0.2 0 -0.2
' 21 0.25 0 0.33 | 0.33
(1 0.251-0.21] 033|059

Departmentof EEE, SIBIT Page 29



Power System Analysis-2 I 18EE71

The fictitious node | is eliminated further to arrive at the final impedance matrix as under:

1 3 2

_. 1 [0.1441 [ 0.0847 1 0.1100

Zpus ™ = 3[0.0847 [ 0.1322 ] 0.1120

2 [0.1100 | 0.1120 | 0.1454
1 2 3 4 5
t[270]0f0]2
2ol27o02T0
Zpvs= 31010]2(0]0
sfol27o03 70
s[2lofolo0]3

4. Prepare the Zy,s for the system shown using Zy,s building algorithm

2.0 pu

T
(3) (6 ) “@ 0

2.0 pu

June 2016
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Solution: The specified system is considered with the reference node denoted by node-0. By
its inspection, we can obtain the bus impedance matrix by building procedure by following
the steps through the p-networks as under:

Stepl: Add branch 1 between node 1 and reference node. (q =1, p =0)

Z mﬁmlz[ ] @
p-network

1
an.'ls(l:J = 1[..-'[:] 1]

Step2: Add branch 2, between node 2 and reference node. (q =2, p =0).
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p-network @
1 2

1f;01 0
‘Z.E'm: .
2l 0 j0.15

Step3: Add branch 3, between node 1 and node 3 (p =1, g =3)

p-network

1 2 3
101 o o1
Zee =2 0 jO15 0O

3lj01 0 jOs5

Step 4: Add element 4, which is a link between node 1 and node 2. (p=1,9=2)
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£3)

&
=

pneowore [(1)
[

1 3 l
1[ 0.1 0 jo1 ol
2| © 70.15 0 - /015
Loy = . , :
3| 0.1 0 J0s5 o1

Il j01 —j 015 jo1  jo8s

Now the extra node-l has to be eliminated to obtain the new matrix of step-4, using the
algorithmic relation:

Y™ = Y™ — Yi, Yo/ Yo Vij=1.2.3.

1 2 3

FO.08823 001765 j0.08823
Zpw = | JO.01765 j0.12353 j0.01765
F0.08823 j0.01765 ;0.48823

Step 5: Add link between node 2 and node 3 (p = 2, g=3)

Zeus

Pp-network

ol3g
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Z,=Z, - Z, = jO.01765- j0.08823 = — j0.07058
Z,=2, -2, =j012353— j0.01765= j0.10588

Zy=Zpn—Zy = j0.01765— j048823 = — j0.47058
Zyg=Zy—Zy+Zya

= j0.10588 - - jO.47058 1+ jO.4 = jO.97646

Thus, the new matrix is as under:

1 2 3 1

1[ j0.08823 j0.01765 j0.08823 - j0.07058]
2| j0.01765 ;0.12353 [0.01765  j0.10588
3| j0.08823 0.01765 j0.48823 — j0.47058
I|-j0.07058 j0.10588 - j0.47058 j0.97646

Node [ is eliminated as shown in the previous step:

1 2 3

11 j0.08313 ;0.02530 ;0.05421
Zy, =2[J0.02530 ;0.11205 j0.06868
3] j0.05421 ;0.06868 ;0.26145

Further, the bus admittance matrix can be obtained by inverting the bus impedance
matrix as under:

1 2 3

1[- 141667  jl6667  j2.5

Y, =2, " =2 jle667 -j108334 ;25
3 J25 25 - j50

As a check. it can be observed that the bus admittance matrix, Ygyus can also be
obtained by the rule of inspection to arrive at the same answer.
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5. Explain the formation of Zy,susingZy,s building algorithm
Dec2016

FORMATION OF BUS IMPEDANCE MATRIX

The bus impedance matrix is the inverse of the bus admittance matrix. An alternative method
is possible, based on an algorithm to form the bus impedance matrix directly from system
parameters and the coded bus numbers. The bus impedance matrix is formed adding one
element at a time to a partial network of the given system. The performance equation of the
network in bus frame of reference in impedance form using the currents as independent
variables is given in matrix form by

E - [Z bus ]fh.!m‘ {L) )

bus
When expanded so as to refer to anbus system, (9) will be of the form

E =Z 0, +Zpnly 4ot Zy o+ Z, 1,

In

non

E =2 1+Z,1,+...+Z, I, +...+Z_1I

E =27
Now assume that the bus impedance matrix Zbus is known for a partial network of m buses
and a known reference bus. Thus, Zbus of the partial network is of dimension mxm. If now a
new element is added between buses p and g we have the following two possibilities:

0) p is an existing bus in the partial network and q is a new bus; in this case p-q is a

branch added to the p-network as shown in Fig 1a, and

(i) bothpand q are buses existing in the partial network; in this case p-q is a link added

to the p-network as shown in Fig 1b.

I +7Z

nl™1 n2

I+ +Z I, +..+Z 1 (10)

nnon
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P
2
Partial
Network
p e o
q
ZBUS 11—
m-—+———
0 | —L Ref.
Fig 1a. Addition of branch p-q
|
21 0000
Partial
Network
P —
ZBUS q —
m-—+———
0 | _ T Ref

Fig 1b. Addition of link p-q

If the added element ia a branch, p-g, then the new bus impedance matrix would be of order
m+1, and the analysis is confined to finding only the elements of the new row and column
(corresponding to bus-q) introduced into the original matrix. If the added element ia a link,
p-q, then the new bus impedance matrix will remain unaltered with regard to its order.
However, all the elements of the original matrix are updated to take account of the effect of

the link added.
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Module 2 & 3

1. Using generalized algorithm expressions for each case of analysis, explain the load
flow studies procedure, as per the G-S method for power system having PQ and PV
buses, with reactive power generations constraints.

June 2016, June 2015

GAUSS - SEIDEL (GS) METHOD

The GS method is an iterative algorithm for solving non linear algebraic equations. An initial
solution vector is assumed, chosen from past experiences, statistical data or from practical
considerations. At every subsequent iteration, the solution is updated till convergence is
reached. The GS method applied to power flow problem is as discussed below.

Case (a): Systems with PQ buses only:

Initially assume all buses to be PQ type buses, except the slack bus. This means that (n—1)
complex bus voltages have to be determined. For ease of programming, the slack bus is
generally numbered as bus-1. PV buses are numbered in sequence and PQ buses are ordered
next in sequence. This makes programming easier, compared to random ordering of buses.
Consider the expression for the complex power at bus-i, given from (7), as:
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*

Si:vi‘ Zj Y; V;
\ “G=1

|
J
/

This can be written as

d I EWV | (15)

Since S, =P;—jQ;, we get,

Pi_jQiz ”YV

‘/,' o j ¥
So that,
n
P - jo
il To Vid 2, Bg 'V (16)
v =
j#i
Rearranging the terms, we get,
Ve | L5 J9 _Sy v.| Vi=23.....n (17)
Y, V; ji=1 '

J

Equation (17) is an implicit equation since the unknown variable, appears on both sides of
the equation. Hence, it needs to be solved by an iterative technique. Starting from an initial
estimate of all bus voltages, in the RHS of (17) the most recent values of the bus voltages is
substituted. One iteration of the method involves computation of all the bus voltages. In
Gauss—Seidel method, the value of the updated voltages are used in the computation of
subsequent voltages in the same iteration, thus speeding up convergence. lterations are
carried out till the magnitudes of all bus voltages do not change by more than the tolerance
value. Thus the algorithm for GS method is as under:

Algorithm for GS method

1. Prepare data for the given system as required.

2. Formulate the bus admittance matrix YBUS. This is generally done by the rule of
inspection.

3. Assume initial voltages for all buses, 2,3,...n. In practical power systems, the magnitude
of the bus voltages is close to 1.0 p.u. Hence, the complex bus voltages at all (n-1) buses
(except slack bus) are taken to be 1.0L.0°. This is normally refered as the flat start solution.

4. Update the voltages. In any (k +1)stiteration, from (17) the voltages are given by
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I P — 10). i—1 - n A ) ,
s o 1 (50O YNV YV | Wie23,..n (18)
1 Y (VU{))" . 1] ] e g )

ii i j=1 j=i+l

Here note that when computation is carried out for bus-i, updated values are already
available for buses 2,3....(i-1) in the current (k+1)stiteration. Hence these values are used.
For buses (i+1).....n, values from previous, kthiteration are used.

AVED =t v ®| < g ¥V i=23;..1 (19)

)

Where,e is the tolerance value. Generally it is customary to use a value of 0.0001 pu.
Compute slack bus power after voltages have converged using (15) [assuming bus 1 is slack
bus].

/
{

S;=P; —jQi =V

ZYUVJ"

\Jj=1

7. Compute all line flows.
8. The complex power loss in the line is given by Sik + Ski. The total loss in the system is
calculated by summing the loss over all the lines.

Case (b): Systems with PV buses also present:
At PV buses, the magnitude of voltage and not the reactive power is specified. Hence it is
needed to first make an estimate of Qi to be used in (18). From (15) we have
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Qi=—1Im <{Vi* iyij V, }

j=1

Where Im stands for the imaginzny part. Atany (k+1)" iteration, at the PV bus-i,

Q%" =—1Im 1

L

The steps for i PV bus are as follows:

(V(k) ZY VU\ +1) (Vi{kl)* ZYU Vj(k)} (21)
j=i

(k=1)

. Compute Q,

—

using (21)

(%]

. Calculate V; using (18) with Q;= Q*™"

i

%)

. Since at the PV bus, the magnitude of V; obtained in step 2

has to be modified and set to the specified value

Vi(k‘l) — é()“ 1} (22)

1 Sp
The voltage computation for PQ buses does not change.
Case (c): Systems with PV buses with reactive power generation limits specified:

In the previous algorithm if the Q limit at the voltage controlled bus is violated during any
iteration, i.e (k +1) i Q computed using (21) is either less than Qi, min or greater than
Qi,max, it means that the voltage cannot be maintained at the specified value due to lack of
reactive power support. This bus is then treated as a PQ bus in the (k+1)stiteration and the
voltage is calculated with the value of Qi set as follows:

If Qi < Qi.min If Qi > Qi.max
Then Ql Q| min. The n Qi = Qi.ma.x.
(23)

If in the subsequent iteration, if Qi falls within the limits, then the bus can be switched back
to PV status.

Acceleration of convergence

It is found that in GS method of load flow, the number of iterations increase with increase in
the size of the system. The number of iterations required can be reduced if the correction in
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voltage at each bus is accelerated, by multiplying with a constant a, called the acceleration
factor. In the (k+1)st iteration we can let

V" (accelerate d) = V" + a (V{“ ) _ V,.“') (24)

wherea is a real number. When o =1, the value of (k +1) is the computed value. If 1<a<2
then the value computed is extrapolated. Generally _ is taken between 1.2 to 1.6, for GS load
flow procedure. At PQ buses (pure load buses) if the voltage magnitude violates the limit, it
simply means that the specified reactive power demand cannot be supplied, with the voltage
maintained within acceptable limits.

2. Derive the expression in polar form for the typical diagonal elements of the sub
matrices of the Jacobian in NR method of load flow analysis.
June 2017, Dec.2015, June 2015
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NR method for load flow solution in polar coordinates

In application of the NR method, we have to first bring the equations to be solved, to

the form f,(x,.x,...x,) =0, where x.x,...x, are the unknown variables to be

n

determined. Let us assume that the power system has n, PV buses and n, PQ buses.
In polar coordinates the unknown variables to be determined are:

(i) 0, , the angle of the complex bus voltage at bus i, at all the PV and PQ buses. This
gives us n, +n, unknown variables to be determined.
(ii)|Vi|. the voltage magnitude of bus i, at all the PQ buses. This gives us n, unknown

variables to be determined.
Therefore, the total number of unknown variables to be computed is:n, +2n, ., for

which we need n, +2n, consistent equations to be solved. The equations are given

by,

AR =Py~ F=0 31
AQ:i =05 ~CQica =0 (32)
Where P, = Specified active power at bus i

Q= Specified reactive power at bus i

P

ical —

Calculated value of active power using voltage estimates.
0, .. = Calculated value of reactive power using voltage estimates

AP = Active power residue

AQ = Reactive power residue
The real power is specified at all the PV and PQ buses. Hence (31) is to be solved at
all PV and PQ buses leading to n, +n, equations. Similarly the reactive power is
specified at all the PQ buses. Hence, (32) is to be solved at all PQ buses leading to n,

equations.
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We thus have n, +2n, equations to be solved for n, +2n, unknowns. (31) and (32)

are of the form F(x) = 0. Thus NR method can be applied to solve them. Equations

(31) and (32) can be written in the form of (30) as:
AP [J, J,| AS
= - (33)
AQ| |J; I, AV
Where J,.J,.J,.J, are the negated partial derivatives of AP and AQ with respect

to corresponding & and|V|. The negated partial derivative of AP, is same as the partial

derivative of Peca. since Psp is a constant. The various computations involved are

discussed in detail next.

Computation of P, and Q.

The real and reactive powers can be computed from the load flow equations as:

Pca=PF = i|vi ”Vk |(Gik cosJy + By sin g, )
k=1

~Gv[ - £

k=i

V|G, cos S, + By sin ) (34)

Qica =0 = Z|Vi "Vk |(Gik sin g, — By, cos J, )
k=l

= =B, |V,.|2 +> ViV |(Gy sin 8, — B, cos 5, ) (35)
ki
The powers are computed at any (r +1)” iteration by using the voltages available from

previous iteration. The elements of the Jacobian are found using the above equations

das:

Elements of J,

—3? = i V|V (G (= sin 5, )+ By, cos 8, }
i k=l
ki
==0; =B Vi|2
k
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Elements of J3

a0, &
%0 =2V V;—‘(Gs;.- COs Sy + B, sindy )= P, —G,V, ’
95, o
k=i
a0,

5" -V.|V. (G, coss, +B, sin 6, )
X

Elements of J,

;}‘5’ Vi|= E‘Vr-‘?(;‘n- +V, i‘vk‘(Gﬁ_ cosd, + B, sind, )=P. +WV.[°G
i k=1

k=i
on

A Vi|=Vi[Vi|(G, cos S, + By sind, )
f

Elements of J,

JP,

i

r}‘V. |V;.- ‘(Gﬂ; §in 9y — By cos 8y ) =0, — ‘V;‘z

Vi|=-2

Vi

Vi

2Bﬁ +Zn:

k=i

20,
v,

|Vk‘ = ‘Vr'uvk |(Gr'k $in 0, — By cosJy )

Thus, the linearized form of the equation could be considered agai
Ao
{AP} _ {H N} AV
AQ M L ‘V‘

The elements are summarized below:

JP.

(iH, =——=-0Q. - B[V
1} n aé‘i Qf n 1
. oP, , L
(i) H, =—X=a, f,—b.e, =V |V,|(G, sin S, — B, cosd,)
33,
(i) Ny =251V | = B, + G, V[
Jv,
. oP. .
(iv) N, = M‘Vk‘ =ae; +b, f, = V.|V, |(G; cos 8, + B, sind,, )
k
a0, )
(V) ‘Mﬁ :£: 'F: _Gir'|vi‘_
90
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3. Compare NR and GS method for load flow analysis procedure in respect of the
following i) Time per iteration ii) total solution time iii) acceleration factor
Iv)number of iterations

Dec 2016, Dec 2015, June 2017

COMPARISON OF LOAD FLOW METHODS

The comparison of the methods should take into account the computing time required
for preparation of data in proper format and data processing, programming ease.
storage requirements, computation time per iteration, number of iterations, ease and
time required for modifying network data when operating conditions change, etc.
Since all the methods presented are in the bus frame of reference in admittance form,
the data preparation is same for all the methods and the bus admittance matrix can be
formed using a simple algorithm, by the rule of inspection. Due to simplicity of the
equations, Gauss-Seidel method is relatively easy to program. Programming of NR
method is more involved and becomes more complicated if the buses are randomly
numbered. It is easier to program, if the PV buses are ordered in sequence and PQ

buses are also ordered in sequence.

The storage requirements are more for the NR method, since the Jacobian elements
have to be stored. The memory is further increased for NR method using rectangular
coordinates. The storage requirement can be drastically reduced by using sparse
matrix techniques, since both the admittance matrix and the Jacobian are sparse
matrices. The time taken for a single iteration depends on the number of arithmetic
and logical operations required to be performed in a full iteration. The Gauss —Seidel
method requires the fewest number of operations to complete iteration. In the NR
method, the computation of the Jacobian is necessary in every iteration. Further. the
inverse of the Jacobian also has to be computed. Hence, the time per iteration is larger
than in the GS method and is roughly about 7 times that of the GS method, in large

systems, as depicted graphically in figure below. Computation time can be reduced if
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the Jacobian is updated once in two or three iterations. In FDLF method, the Jacobian
is constant and needs to be computed only once. In both NR and FDLF methods, the

time per iteration increases directly as the number of buses.

Time units

al
4| NR
s
. - : ES
0 40 80 120 No. of buses

Figure 4. Time per Iteration in GS and NR methods

The number of iterations is determined by the convergence characteristic of the
method. The GS method exhibits a linear convergence characteristic as compared to
the NR method which has a quadratic convergence. Hence, the GS method requires
more number of iterations to get a converged solution as compared to the NR method.
In the GS method, the number of iterations increases directly as the size of the system
increases. In contrast, the number of iterations is relatively constant in NR and FDLF
methods. They require about 5-8 iterations for convergence in large systems. A
significant increase in rate of convergence can be obtained in the GS method if an
acceleration factor is used. All these variations are shown graphically in figure below.
The number of iterations also depends on the required accuracy of the solution.
Generally, a voltage tolerance of 0.0001 pu is used to obtain acceptable accuracy and
the real power mismatch and reactive power mismatch can be taken as 0.001 pu. Due
to these reasons, the NR method is faster and more reliable for large systems. The
convergence of FDLF method is geometric and its speed is nearly 4-5 times that of

NR method.
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Tizne units

SOy
0] =S
20
=
! . |
O —0 |0 120 No. oj!’huses

Figure 5. Total time of Iteration in
GS and NR methods

No. of iterations

1200
m__
—m——
1___7___’/Nﬁ/
| | | | -
1 ' ! v
0 1.2 1.4 1.6 Acc. Factor

Figure 6. Influence of acceleration factor

on load flow methods
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The load flow problem, also called as the power flow problem, has been considered
in detail. The load flow solution gives the complex voltages at all the buses and the complex
power flows in the lines. Though, algorithms are available using the impedance form of the
equations, the sparsity of the bus admittance matrix and the ease of building the bus
admittance matrix, have made algorithms using the admittance form of equations more
popular. The most popular methods are the Gauss-Seidel method, the Newton-Raphson
method and the Fast Decoupled Load Flow method.

These methods have been discussed in detail with illustrative examples. In smaller
systems, the ease of programming and the memory requirements, make GS method
attractive. However, the computation time increases with increase in the size of the system.
Hence, in large systems NR and FDLF methods are more popular. There is a tradeoff
between various requirements like speed, storage, reliability, computation time, convergence
characteristics etc. No single method has all the desirable features. However, NR method is
most popular because of its versatility, reliability and accuracy.

4. Explain briefly fast decoupled load flow (FDLF) solution method for solving the non
linear load flow equations.
Dec 2015, June 2017
5. What are the assumptions made in fast decoupled load flow method? Explain the
algorithm briefly, through a flow chart.
June 2015, Dec 2016
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Strategy-1
(i) Calculate AP, AQ" and J"!

Aé‘(fl

(ii)  Compute A“|,Vqu.” :[J"’]"[ig‘(:),}

(iii) Update & and |V|.

(iv) Go to step (i) and iterate till convergence is reached.

Strategy-2

(i) Compute AP"’ and Sub-matrix H'"’. From (37) find AS8"' = [H"']"AP"’
(ii) Up date & using """ = 8" + A",

(iii) Use 8" to calculate AQ"’ and L’

: A|V'” [ lrl]" (r)
(iv) Compute |V"'| =\ AQ

(v)Update, |V""'| - |V(r)

+lav®

(vi) Go to step (i) and iterate till convergence is reached.

In the first strategy. the variables are solved simultaneously. In the second strategy the

iteration is conducted by first solving for AS and using updated values of & to

calculate A|V|. Hence. the second strategy results in faster convergence, compared to

the first strategy.
FAST DECOUPLED LOAD FLOW

If the coefficient matrices are constant, the need to update the Jacobian at every
iteration is eliminated. This has resulted in development of fast decoupled load Flow
(FDLF). Here, certain assumptions are made based on the observations of practical

power systems as under:

e Bj >>Gj; (Since the )VR ratio of transmission lines is high in well designed

systems)
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e The voltage angle difference (5,. —5j) between two buses in the system is very

small. This means cos (5, -9; )E land sin (§i - 0; ): 0.0

2

* (Q,<<B;

Vi

With these assumptions the elements of the Jacobian become
H; =Ly = _|vi||vk |Bik (i + k)
H, =L, =-B,lV,

The matrix (37) reduces to

[aP]= ﬁv,| 1% j|B,; IAé']
[aQ]= ﬂv,. ||vj|Bg I?'T‘ﬂ (38)

r”

Where BU and B; are negative of the susceptances of respective elements of the

bus admittance matrix. In (38) if we divide LHS and RHS by |V,.

and assume |Vj| =1

we get,

i

A0 =[B; {M} (39)
_|V|} TV

Equations (39) constitute the Fast Decoupled load flow equations. Further

A—P] = [5; Jas]

simplification is possible by:
e Omitting effect of phase shifting transformers
e Setting off-nominal turns ratio of transformers to 1.0
e In forming B,J . omitting the effect of shunt reactors and capacitors which
mainly affect reactive power

e Ignoring series resistance of lines in forming the Ypuys.
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6. Explain the representation of transformer with fixed tap changing during the

load flow studies
June 2017

REPRESENTATION OF TAP CHANGING TRANSFORMERS

Consider a tap changing transformer represented by its admittance connected in series

with an ideal autotransformer as shown (a= turns ratio of transformer)

Fig. 2. Equivalent circuit of a tap setting transformer

A .
& @

Fig. 3. n-Equivalent circuit of Fig.2 above.

By equating the bus currents in both the mutually equivalent circuits as above, it can
be shown that the m-equivalent circuit parameters are given by the expressions as
under:

(i) Fixed tap setting transformers (on no load)

A=Ypq/ a

B=1/a(1/a-1) Ypq

C=(1-1/a) Ypq
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(i) Tap changing under load (TCUL) transformers (on load)

A=Ypq
B=(l/a-1)(1/a+1-Eqg/Ep) Ypq
C=(1-1/a) (Ep/Eq) Ypq

Thus, here, in the case of TCUL transformers, the shunt admittance values are

observed to be a function of the bus voltages.

7. What is load flow analysis? What is the data required to conduct load
flow analysis? Explain how buses are classified to carry out load flow
analysis in power system. What is the significance of slack bus.

Dec 2015,Dec 2016, June 2017
Load flow studies are important in planning and designing future expansion of power
systems. The study gives steady state solutions of the voltages at all the buses, for a
particular load condition. Different steady state solutions can be obtained, for different
operating conditions, to help in planning, design and operation of the power system.
Generally, load flow studies are limited to the transmission system, which involves bulk
power transmission. The load at the buses is assumed to be known. Load flow studies throw
light on some of the important aspects of the system operation, such as: violation of voltage
magnitudes at the buses, overloading of lines, overloading of generators, stability margin
reduction, indicated by power angle differences between buses linked by a line, effect of
contingencies like line voltages, emergency shutdown of generators, etc. Load flow studies
are required for deciding the economic operation of the power system. They are also
required in transient stability studies. Hence, load flow studies play a vital role in power
system studies. Thus the load flow problem consists of finding the power flows (real and
reactive) and voltages of a network for given bus conditions. At each bus, there are four
quantities of interest to be known for further analysis: the real and reactive power, the
voltage magnitude and its phase angle. Because of the nonlinearity of the algebraic
equations, describing the given power system, their solutions are obviously, based on the
iterative methods only. The constraints placed on the load flow solutions could be:
_ The Kirchhoff™s relations holding good,
_ Capability limits of reactive power sources,
_ Tap-setting range of tap-changing transformers,
_ Specified power interchange between interconnected systems,
_ Selection of initial values, acceleration factor, convergence limit, etc.

Classification of buses for LFA: Different types of buses are present based on the
specified and unspecified variables at a given bus as presented in the table below:
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Table 1. Classification of buses for LFA

SL Specified | Unspecified
Bus Types ,l x i , P Remarks
No. i Variables variables
1 | Slack/ VI, 5 Pe. Q |V], &: are assumed if not
Swing Bus ? P specified as 1.0 and 0’
Generator/ A generator is present at the
9) o
Machine/ PV Bus | £ [V Q. O machine bus
About 80% buses are of P
3 | Load/ PQ Bus Ps. Qo V|, & e 80% Q
Voltage ‘a’ is the % tap change in
4 i : - i
Controlled Bus Pg.Qc. [V 0, tap-changing transformer

Importance of swing bus:

The slack or swing bus is usually a PV-bus with the largest capacity generator of the given
system connected to it. The generator at the swing bus supplies the power difference
between the “specified power into the system at the other buses” and the “total system output
plus losses”. Thus swing bus is needed to supply the additional real and reactive power to
meet the losses. Both the magnitude and phase angle of voltage are specified at the swing
bus, or otherwise, they are assumed to be equal to 1.0 p.u. and 00, as per flat-start procedure
of iterative

solutions. The real and reactive powers at the swing bus are found by the computer routine
as part of the load flow solution process. It is to be noted that the source at the swing bus is a
perfect one, called the swing machine, or slack machine. It is voltage regulated, i.e., the
magnitude of voltage fixed. The phase angle is the system reference phase and hence is
fixed. The generator at the swing bus has a torque angle and excitation which vary or swing
as the demand changes. This variation is such as to produce fixed voltage.

Importance of YBUS based LFA:

The majority of load flow programs employ methods using the bus admittance matrix, as this
method is found to be more economical. The bus admittance matrix plays a very important
role in load flow analysis. It is a complex, square and symmetric matrix and hence only
n(n+1)/2 elements of YBUS need to be stored for a n-bus system. Further, in the YBUS
matrix, Yij = 0, if an incident element is not present in the system connecting the buses ,,i*
and ,,j*. since in a large power system, each bus is connected only to a fewer buses through
an incident element, (about 6-8), the coefficient matrix, YBUS of such systems would be
highly sparse, i.e., it will have many zero valued elements in it. This is defined by the
sparsity of the matrix, as under:

Departmentof EEE, SIBIT Page 53



Power System Analysis-2 I 18EE71

s : Total no. of zero valued elements of Ygus
Percentage sparsity of a

. o St e
given matrix of n= order:

Total no. of entries of Ygus

(Z/n*) x 100 % (1)

v
Il

The percentage sparsity of Ysus, in practice, could be as high as 80-90%, especially

for very large, practical power systems. This sparsity feature of YBUS is extensively used in
reducing the load flow calculations and in minimizing the memory required to store the
coefficient matrices. This is due to the fact that only the non-zero elements YBUS can be
stored during the computer based implementation of the schemes, by adopting the suitable
optimal storage schemes. While YBUS is thus highly sparse, it*s inverse, ZBUS, the bus
impedance matrix is not so. It is a FULL matrix, unless the optimal bus ordering schemes are
followed before proceeding for load flow analysis.

THE LOAD FLOW PROBLEM

Here, the analysis is restricted to a balanced three-phase power system, so that the analysis
can be carried out on a single phase basis. The per unit quantities are used for all quantities.
The first step in the analysis is the formulation of suitable equations for the power flows in
the system. The power system is a large interconnected system, where various buses are
connected by transmission lines. At any bus, complex power is injected into the bus by the
generators and complex power is drawn by the loads. Of course at any bus, either one of
them may not be present. The power is transported from one bus to other via the
transmission lines. At any bus i, the complex power Si (injected), shown in figure 1, is
defined as

Si = Sgi — Spi (2)

Pi+jQ; PeitiQeci
Bus-i %

L

System in o

bus Frame A
of Reference

D
Ref. Bus

Fig.1 power flows at a bus-i
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where Si = net complex power injected into bus i, SGi = complex power injected by the
generator at bus i, and SDi = complex power drawn by the load at bus i. According to
conservation of complex power, at any bus i, the complex power injected into the bus must
be equal to the sum of complex power flows out of the bus via the transmission lines. Hence,

Si= Sij"i=12, i n
where Sij is the sum over all lines connected to the bus and n is the number of buses
in the system (excluding the ground). The bus current injected at the bus-i is defined as

li=I1Gi—IDIi"i=1,2, .. n
where IGi is the current injected by the generator at the bus and IDi is the current
drawn by the load (demand) at that bus. In the bus frame of reference

IBUS = YBUS VBUS
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where

Igus=| . is the vector of currents injected at the buses,

Ygus is the bus admittance matrix, and

|
VZ

Veus=| . is the vector of complex bus voltages.
Vn

Equation (5) can be considered as

L= ) TV 8 e P n (6)
j=1

The complex power S; is given by

Si= Vi ];

=V [ZY,;V;] (7)

j=1
Let VAWV, |26, = |v,](cos &, + jsin &,)
0y =0~
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Yy =G+ 18,

Hence from (7). we get,
Si= i 4 |Vj’ (cos Jg; + jsin 5,.1.) (G,.j ~ jB,.j) (8)
j=1

Separating real and imaginary parts in (8) we obtain,

P = Z" v |Vj’ (Gij cosd; + B;sin 5,]) 9)
j=1

Qi= i ‘Vll ’Vj| (G,.j sin 5,.]. - B, cosc‘)‘,.j) (10)
j=1

An alternate form of P; and Q; can be obtained by representing Y also in polar form
as L AR (11)

Again, we get from (7),
si= V|28, |vy| -6, v,| £- 6 (12)
j=1
The real part of (12) gives P;.

IVIZ

‘LOS( 6, + 0, —5j)

I]|

‘ ||V|L05 - 0, +9;) or

ij‘ cos(g; — 0, +90;) V=2 n, (13)

Similarly, Q; is imaginary part of (12) and is given by

0=V Z‘YJ‘ ;| sin— (6, 5,+5)) or
j=1
0, :—Z": Vi [v,| %] sin; - 6,+6,)  Vi=l2.....n¢ (14)
j=1
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Equations (9)-(10) and (13)-(14) are the ,,power flow equations* or the ,,load flow equations*
in two alternative forms, corresponding to the n-bus system, where each bus-iis characterized
by four variables, Pi, Qi, |Vi|, and di. Thus a total of 4n variables are involved in these
equations. The load flow equations can be solved for any 2n unknowns, if the other 2n
variables are specified. This establishes the need for classification of buses of the system for
load flow analysis into: PV bus, PQ bus, etc.

8. Write a short note on i) acceleration factor in load flow solution.
June 2016

Acceleration of convergence

It is found that in GS method of load flow, the number of iterations increase with increase in
the size of the system. The number of iterations required can be reduced if the correction in
voltage at each bus is accelerated, by multiplying with a constant a, called the acceleration
factor. In the (k+1)st iteration we can let

V.5 (accelerate d) = V,*) + a (V%) — V!.”‘])

wherea is a real number. When a =1, the value of (k +1) is the computed value. If 1<a<2
then the value computed is extrapolated. Generally _ is taken between 1.2 to 1.6, for GS load
flow procedure. At PQ buses (pure load buses) if the voltage magnitude violates the limit, it
simply means that the specified reactive power demand cannot be supplied, with the voltage
maintained within acceptable limits.

9. For the power system shown in fig. below, with the data as given in tables below,
obtain the bus voltages at the end of first iteration, by applying GS method.

Dec 2015,Dec 2016
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Example-1: Obtain the voltage at bus 2 for the simple system shown in Fig 2, using

the Gauss—Seidel method, if V; = 1 £ 0’ pu.

SG1 _I_S-|10
Z=j0.5 I
Sp1 Sp2=0.5+j1

Fig : System of Example 1
Solution:
Here the capacitor at bus 2, injects a reactive power of 1.0 pu. The complex power
injection at bus 2 is
S, =j1.0-(0.5+j1.0)=-0.5 pu.
Vi=1£0°

_j2 2
Ygus = [ .j j. }
J2 —J2
Vz(k-” ZL {Pli —u)J)“Q'Z =1, V]]
A

Since V, is specified it is a constant through all the iterations. Let the initial voltage at

bus2, V) =1+j0.0=1-£0°pu.
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=1.0-j0.25 = 1.030776 £- 14.036°

y2=—L 0> _(j2x120°)
~ 2 | 1.030776214.036

=0.94118 —j 0.23529 =0.970145 £-14.036"

v = ! —0-5 —(j2x120°)
' —j210.970145214.036" T

=0.9375-0.249999 =0.970261 £-14.93 1

05
yi=_L Y ——(j2x120°)
— 21 0.970261214.931
— 0933612 —  0.248963 = 0.966237 /£ —14.931°

_ 0.5
yi= L _ 0 _(j2x120°)
~ 721 0.966237214.931

=0.933335-j0.25 =0.966237 £ —14.995"

Since the difference in the voltage magnitudes is less than 10-6 pu, the iterations can be
stopped. To compute line flow
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, ViV, | 1£0° - 0.966237 £ ~14.995"
S L j05

= 0.517472 £ -14.931°
S, =V, = 1 20°%0.517472 2 14.931"
= 0.5+ 0.133329 pu

_V, =V, 0966237 £-14.995°-1£0°

I,
oz, j0.5

= 0.517472 £ -194.93°

S, =V,I,,=-05+4+j0.0pu

The total loss in the line is given by S12 + S21 = j 0.133329 pu Obviously, it is observed that
there is no real power loss, since the line has no resistance.
10. For the power system shown in fig. below, with the data as given in tables below,
obtain the bus voltages at the end of first iteration, by applying GS method.
June 2017
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N
3

Power System of Example 2

Line data of example 2
R X | Bc
(pu) | (pu) 2
0.10 | 0.40 -
0.15 | 0.60 -
0.05 | 0.20 -
0.05 | 0.20 -
0.10 | 0.40 -
0.05 | 0.20 -

SB | EB

f‘__,‘)l._]|._]|—t—l—t
h| | G| ] 4= | 1

Bus data of example 2

Pg Qg Pp Qb | Vsl | -
(pu) | (pu) | (pu) | (pu) (pu)
- - 1.02 | 0°
- - 0.60 | 0.30 -
1.0 - - - 1.04 -

0.40 | 0.10 -
- - 0.60 | 0.20 - -

Bus No.

| | | bd | =
|
|

Solution: In this example, we have,
e Bus I is slack bus, Bus 2. 4, 5 are PQ buses, and Bus 3 is PV bus
e The lines do not have half line charging admittances

P>+ jQ2 = P2 + jQc2— (Pp2 + jQp2) = - 0.6 - jO.3
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P34+ jQs = Pg3 + jQs3— (Pp3 + jQp3) = 1.0 + jQg3
Similarly Py + jQs=-0.4

—jo.1,

Ps + jQs

The Ypys formed by the rule of inspection is given by:

=-06-j0.2

2.15685 | -0.58823 | 0.0+j0.0 | -0.39215 | -1.17647
-i8.62744 | +j2.35294 +1.56862 | +]4.70588
-0.58823 | 2.35293 | -1.17647 | -0.58823 | 0.0+j0.0
+]2.35294 | -j9.41176 | +j4.70588 | +j2.35294
v —| 00400 | -117647 | 2.35204 | 0.0+j0.0 | -1.17647
b = +4.70588 | -j9.41176 +j4.70588
20.39215 | -0.58823 | 0.0+j0.0 | 0.98038 | 0.0+j0.0
+1.56862 | +j2.35294 -i3.92156
1.17647 | 0.04j0.0 | -1.17647 | 0.0+j0.0 | 2.35294
+4.70588 +]4.70588 -9.41176

The voltages at all PQ buses are assumed to be equal to 14j0.0 pu. The slack bus

voltage is taken to be V,° = 1.02+0.0 in all iterations.

22 ¥y Yzl V|o a Y23 V3O o Y24 VJO _YZS V50:|

—{~0.58823 + j2.35294) x 1.02.20°}

—{-1.17647 + j470588)x 1.0420° } - {~ 0.58823 + j2.35294) x 1.0£0° ]

= 0.98140 £ -3.0665° = 0.97999 — j0.0525

Bus 3 is a PV bus. Hence, we must first calculate Qs. This can be done as under:

Q3= |Vi| M| (G, sin 6, — 1, 8ind,, — B, cosd,,)
+ ‘V;|2 (Gy;sindy, — By, cos 8y, ) +|Vi| V.| (G, sin 6, — By, cosds,)
+ V4| V5| (G sin 85 — By cos b))
We note that §; = 0% 8, =-3.0665% 83=0% 64=0° and 85=0
031 =033=0834=035=0" (8 =8 — 8): O30 =3.0665°

Q3= 1.04[1.02 (0.0+j0.0) + 0.9814 {-1.17647 x sin(3.0665°) — 4.70588
xc08(3.0665°%) }+1.04{-9.41176 xcos(0°) }+1.0 {0.0 + j0.0}+1 .0{—4.70588xcos(0°)}]
= 1.04 [-4.6735 + 9.78823 — 4.70588] = 0.425204 pu.
yio L {
Y33

M_ Y:u Vlo = Yaz Vzl s Y34 V40 _Y35 Vso:l
Departmentof EEE, SIBIT
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1 [1.0-j0425204 {

. —1.7647 + j4.70588)x (0.98140£ —3.0665°)}
Y| 1.04- 0.0

—{-1.17647 + j470588)x (1£0°)}]
= 1.05569 £3.077°= 1.0541 + j0.05666 pu.

Since it is a PV bus, the voltage magnitude is adjusted to specified value and V, is

computed as:  V, =1.04 £3.077°pu

1 | P,— jO, 0
V4I = o {% Y,V =Y, Vzl - Yy V3l =Y V50j|
Y, v,

= L2048+ )01 630215+ j1.56862)x 1.0220°}
Y. | 1.0-j00

—{(~0.58823 + j2.35294)x(0.98140.£ —3.0665°)}]

0.45293 — j3.8366 _
0.98038 — j3.92156

0.955715 £-7.303° pu= 0.94796- j0.12149

p_
A :YL {qv—olQi_ Zww-v, Vzl — Y, V3I -Y, V4l}
55 5

=i () D
YL [M —{-1.17647 + j4.70588)x 1.02.£0° }
55

1.0— j0.0
—{~1.17647 + j4.70588)x1.04.23.077°}]
= 0.994618 £ —1.56° = 0.994249 — j0.027

Thus at end of 1™ iteration, we have.

Vi =1.02£0pu V,=0.98140 £-3.066° pu
V3 =1.04£3.077° pu V4= 0.955715£-7.303° pu
and Vs=0.994618 2 -1.56° pu
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11. Obtain the load flow solution at the end of first iteration of the system with data as
given below. The solution is to be obtained for the following cases
(i) All buses except bus 1 are PQ Buses
(ii) Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu
(i) Bus 2 is PV bus, with voltage magnitude specified as 1.04 and 0.25_Q2_1.0 pu.

O (=

_

(&)

Fig. System for Example 3

Table: Line data of example 3

R X
SB EB (pu) (pu)
1 2 0.05 0.15
| 3 0.10 0.30
2 3 0.15 0.45
2 4 0.10 0.30
3 4 0.05 0.15

Table: Bus data of example 3

Bus No. Py . Qix Vi
(pu) (pu)
1 — — 1.04 2 0"
2 0.5 — 0.2 —
3 — 1.0 0.5 —
4 —03 | —0.1 —

June 2015, June 2016
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Solution: Note that the data is directly in terms of injected powers at the buses. The

bus admittance matrix is formed by inspection as under:

30-9.0 | 2.0+j6.0 | —1.0+j3.0 0
—2.0+j6.0 | 3.666—j11.0 | —0.666 + j2.0 |- 1.0 + 3.0
—1.0+j3.0 | —0.666 +j2.0 | 3.666—j11.0 | —2.0 + 6.0

0 —1.0+j3.0 | —2.0+j6.0 | 3.0-j9.0

Ygus =

Case(i): All buses except bus 1 are PQ Buses
Assume all initial voltages to be 1.0 £ 0° pu.

Vl_ I I:Pg_jQz_

v Yzl Vlo . Y23 V30 - Y24 V4O:|
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—{~2.0+ j6.0)x(1.0420° )}

1 [0.5+ j02
Y,, | .0— j0.0

—{~0.666 + j2.0)x (1.0£0° )} - {~1.0 + j3.0)x(1.020° )]
= 1.02014 £ 2.605°

1 [P— ’
V3I = { : o{QS e R £ Vzl - Y, V40}
Y33 V3
-1.0- j0.5
= | ;’O — 1.0+ j3.0)x (1.04£0.0°)}
Y, | 1.0- j0.0

—{~0.666 + j2.0)x (1.02014£2.605°)} - {= 2.0 + j6.0) x (1.0.20° )}
= 1.03108 £ 4.831°

= B
Vi = 1 : 0_£Q4 YWYV ~ YV
Y| W -
3+ .
= L0301 £y 04 j3.0)x(1.02014.22.605° )}
Y, | 1.0— j0.0
{20+ j6.0)x(1.031082-4.831)}]
= 1.02467 £ -0.51°
Hence

V! =1.04 £0%°pu V) =1.02014 £2.605° pu

V) =1.03108 £-4.831° pu V) =1.02467 £ -0.51° pu
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Case(ii): Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu
We first compute Q.

Q,= |V2‘[|V,‘ (G,,sind,, — B,,cosd,, )+ |V,| (G, sind,, — B,, cosd,, )

v,

+ |V (G sindyy — Byycosdy ) + LA (G, sin &,y — By, c0s ]]

= 1.04[1.04 {=6.0} + 1.04 {11.0}+1.0{= 2.0} + 1.0 {=3.0}= 0.208 pu.

v, = 2.0+ j6.0)x(1.0420°)}

| | 05— 0.208
Y,, | 1.04£0°

—{~0.666 + j2.0)x (1.02£0° )} - {~1.0 + j3.0)x(1.020° )}
= 1.051288 +j0.033883
The voltage magnitude is adjusted to 1.04. Hence V. = 1.04 £ 1.846"

1 | —1.0- jO.5 )
VI = : —=1.0+ 73.0)x (1.0420.0°
3 % { 1.0 20" {[ J2 ) ( )}

33
- 0.666 + j2.0)x (1.04.21.846°)} — { 2.0 + j6.0)x (1.0.20° )}
— 1.035587 /- 4.951° pu.

1.0+ j3.0)x(1.0421.846°)}

1 [03+ 01
Y, |L1.0- 0.0

2.0+ j6.0)%(1.035587 2 4.9519)}]
= 0.9985 2~ 0.178°

Hence at end of 1™ iteration we have:
V! =1.04 20"pu V) =1.04 £1.846" pu

V! =1.035587 £—4.951° pu V) =0.99852-0.178° pu
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Case (iii):Bus 2 is PV bus, with voltage magnitude specified as 1.04 & 0.25=Q»=1 pu.

If 025 < Q, <

1.0 pu then the computed value of Q, = 0.208 is less than the lower
limit. Hence, Q; is set equal to 0.25 pu. Iterations are carried out with this value of Q.
The voltage magnitude at bus 2 can no longer be maintained at 1.04. Hence, there is
no necessity to adjust for the voltage magnitude. Proceeding as before we obtain at
the end of first iteration,

V! =1.04 £0°pu V) =1.05645 £ 1.849° pu

V., =1.038546 £—4.933° pu V) =1.081446 £ 4.896° pu

12. What are the advantages of Y-bus and Z-bus for load flow studies?

June 2015
The sparsity of the bus admittance matrixand the ease of building the bus admittance matrix,
have made algorithms using theadmittance form of equations more popular.The most
popular methods are the Gauss-Seidel method, the Newton-Raphsonmethod and the Fast
Decoupled Load Flow method. These methods have beendiscussed in detail with illustrative
examples. In smaller systems, the ease ofprogramming and the memory requirements, make
GS method attractive. However,the computation time increases with increase in the size of
the system. Hence, in largesystems NR and FDLF methods are more popular. There is a
trade offbetweenvarious requirements like speed, storage, reliability, computation t ime,
convergencecharacteristics etc. No single method has all the desirable features. However,
NRmethod is most popular because of its versatility, reliability and accuracy.
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Module 4

1. Derive the necessary condition for optimal operation of thermal power plants with
the transmission losses considered. Jan.2014,June 2016

ECONOMIC DISPATCH INCLUDING TRANSMISSION L OSSES

When transmission distances are large, the transmission losses are a significant part of the
generation and have to be considered in the generation schedule for economic operation. The
mathematical formulation is now stated as

n,
Minimize E /= Z F,
i=1

Such That Z Py =P, +P
i=1

where Py is the total loss.
The Lagrange function is now written as

/ "Q

\
£ = FT—AI S BBy~ B i:()

\ =1

The minimum point is obtained when

Jf JF, /1{ l_aP,f

L. e |=0: i=1.....n,
oP.. b, ¢ OB Z
a£ n, , ‘
—=> P, —P,+P, =0  (Same as the constraint)
A ‘T
oF. IF.

Since T -(—’. (8.27) can be written as

oP, dP,

| 8 oP,
iy it =)
dP, P,
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_ dF;, |
~ dP, | 1-0P,
oP; )
1 ‘ . 5 5 o
The term ————is called the penalty factor of plant i, L;. The coordination

JP,,

equations including losses are given by

IF.
A=t L.
dP;,

The minimum operation cost is obtained when the product of the incremental fuel cost and
the penalty factor of all units is the same, when losses are considered. A rigorous general
expression for the loss PL is given by

l:}I_. — Em En PGm B‘mn PGn + En pGn Bno + Buo

whereBmn, Bno , Boo called loss — coefficients , depend on the load composition. The
assumption here is that the load varies linearly between maximum and minimum values. A
simpler expression is

pL: Em En me an PGn

The expression assumes that all load currents vary together as a constant complex fraction of
the total load current. Experiences with large systems has shown that the loss of accuracy is
not significant if this approximation is used. An average set of loss coefficients may be used
over the complete daily cycle in the coordination of incremental production costs and
incremental transmission losses. In general, Bmn = Bnm and can be expanded for a two
plant system as

P.= B, Pg, + 2 B3 P Pz + By Py’
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2. What are B- coefficients? Derive the matrix form of transmission loss equation.

June 2015, June 2017,Dec 2016, Dec 2015

DERIVATION OF TRANSMISSION LOSS FORMULA

An accurate method of obtaining general loss coefficients has been presented by Kron. The
method is elaborate and a simpler approach is possible by making the following
assumptions:

() All load currents have same phase angle with respect to a common reference

(i) The ratio X / R is the same for all the network branches.

Consider the simple case of two generating plants connected to an arbitrary number of loads

through a transmission network as shown in Fig a
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I
lg2
O

(a)

lGI = lD
O
IK| lD
N I
lgp=0

(b)
Igi=0
AN
lg2=1Ip >

@ | Ik> Ip

(c)

Fig Two plants connected to a number of loads through a transmission network
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Let’s assume that the total load is supplied by only generator 1 as shown in Fig 8.9b. Let

the current through a branch K in the network be Ix,. We define

I;
Ny = =
ID
It is to be noted that I, = Ip in this case. Similarly with only plant 2 supplying the load

current Ip as shown in Fig 8.9c, we define
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Nki and Ng» are called current distribution factors and their values depend on the
impedances of the lines and the network connection. They are independent of Ip. When
both generators are supplying the load, then by principle of superposition

Ik = Nki Igi + Nka Ig2

where Ig;, Ig, are the currents supplied by plants 1 and 2 respectively, to meet the
demand Ip. Because of the assumptions made, Ix; and Ip have same phase angle, as do

Ix> and Ip. Therefore, the current distribution factors are real rather than complex. Let
=|L, | L0, and I, =1\ 20,

where o, and &, are phase angles of I, and Ig, with respect to a common reference. We

can write

2 2
€080, ) + (N |l |sin o, + Ny, |l |sine,

‘1K|2 = (Nl(lllGllcoso-l +NK2|IG2

2 2[,.2 -2] 2 2[‘3 -2]
Ny |1 [cos? o, +5sin’ o, |+ Ny, |1 5| [cos® o, +5sin’ o,

162

]

+2[NKI|IG||COSO']NK2

I,|cos0, + Ny |l |sino Ny,

=N, 2| +1v,‘.,2 I/ 42NNl cos(o, - ,)

alls>

P

Now |I| = and|l;,| =

\/_|V |Cosc¢ 3
where Pg,, Pg; are three phase real power outputs of plantl and plant 2; V,, V, are the

line to line bus voltages of the plants and ¢, , ¢, are the power factor angles.
The total transmission loss in the system is given by
PL= > 31, |'R¢
K
where the summation is taken over all branches of the network and Rk is the branch

resistance. Substituting we get

B2 2 2P, P, cos(o, — o,
B = oL ZNKI-RK+ = G_COS(O-I O--)ZNKINKZRK

|VI “(cos g, )2 K V,|cosg, cosg, K
B’ 5

Ny, Ry
(cow ) &

F = PclzBu + 2P, Py By, + Pczszz

where B,= ;ZNMZRK

v, ‘ cosd, )
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coslo, — o,
B, = V‘(‘ I. ‘ ‘_) ‘ ZNKlNlczRK
1" 2 Sl s

Y2 K

1 >
B')j = ,,—’ N ’Z_R -
v, (cosg, ) ; ke

The loss — coefficients are called the B — coefficients and have unit MW",

For a general system with n plants the transmission loss is expressed as

— -
V,, “(cosa, ) T

ZNI\P

-__a VN
Vi| (cosg,)” &
i Z PG,,PGq gos

p.g=1
P*q

,|COS 0 cos 0

In a compact form

n n

PL :ZZPGPBPqPGq

p=1 g=1

B, cos(a =0 )

Z NKPNI\’q RK

'V COS @, Loso X

B — Coefficients can be treated as constants over the load cycle by computing them at

average operating conditions. without significant loss of accuracy.

3. Explain problem formation and solution procedure of optimal scheduling for hydro
thermal plants. June 2016, Dec.2015

4. WWhat is the basic criterion for economical division of load between units within a
plant?

June 2016, Dec.2015
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ECONOMIC GENERATION SCHEDULING NEGIECTING 1 OSSES AND
GENERATOR LIMITS

The simplest case of economic dispatch is the case when transmission losses are neglected.
The model does not consider the system configuration or line impedances. Since losses are
neglected, the total generation is equal to the total demand PD. Consider a system with ng
number of generating plants supplying the total demand PD. If Fi is the cost of plant iin

Rs/h, the mathematical formulation of the problem of economic scheduling can be stated as
follows:

HQ
Minimize Fr= ZF}.
i=1
".:
Such that T o
i
where Fr = total cost.

Pgi = generation of plant 1.
Pp = total demand.

This is a constrained optimization problem, which can be solved by Lagrange*s method.

LAGRANGE METHOD FOR SOLUTION OF ECONOMIC SCHEDULE
The problem is restated below:
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n_g
Minimize FT - z :Fi
g1
’Ig
Such that P, = z P;;, =0

i=1

The augmented cost function is given by
: n,
i=1

The minimum is obtained when

-d£ =0 and f)£ =0
Gi C

-E)£ _ —E)FT e e S

()PGi C)PGI

of

.—_:P—”P‘.:O
=7 D ; G

The second equation is simply the original constraint of the problem. The cost of a plant
Fi depends only on its own output PGi, hence

OF, OF dF

i i

dP,, dP, dP,
Using the above,
oF dF
t=——L =4 i=1l...... N,
JdP,  dP,

We can write
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The above equation is called the co-ordination equation. Simply stated, for economic
generation scheduling to meet a particular load demand, when transmission losses are
neglected and generation limits are not imposed, all plants must operate at equal incremental
production costs, subject to the constraint that the total generation be equal to the demand.
From we have

We know in a loss less system

Substituting (8.16) we get

o

An analytical solution of A is obtained from (8.17) as

Ilg l

Po + 2 a7

ﬂ, — =1 = i
; I

2, 2¢,

= - i

It can be seen that | is dependent on the demand and the coefficients of the cost function.
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5. Derive the necessary condition for optimal operation of thermal power plants
without the transmission losses considered.
Jan 2014, June 2016, June 2015

ECONOMIC SCHEDULE INCLUDING LIMITS ON GENERATOR (NEGLECTING
LOSSES)

The power output of any generator has a maximum value dependent on the rating of the
generator. It also has a minimum limit set by stable boiler operation. The economic dispatch
problem now is to schedule generation to minimize cost, subject to the equality constraint.

iPGizpD

i=l

and the inequality constraint
l)Gi (min) = PGi = PGi (max) - i llg

The procedure followed is same as before i.e. the plants are operated with equal incremental
fuel costs, till their limits are not violated. As soon as a plant reaches the limit (maximum or
minimum) its output is fixed at that point and is maintained a constant. The other plants are
operated at equal incremental costs.

6. Draw and explain the following i) input-output curve ii) cost curve iii) incremental cost
The fuel costin $ / h for two 800 MW plants is given by
Fi =400 + 6.0 Pg; + 0.004 Pg,”
F, = 500 + by Pgy + ¢, Pgy
where Pg;. Pg> are in MW
(a) The incremental cost of power, A is $8 / MWh when total demand is 550MW.
Determine optimal generation schedule neglecting losses.
(b) The incremental cost of power is $10/MWh when total demand is 1300 MW.
Determine optimal schedule neglecting losses.

(¢) From (a) and (b) find the coefficients b, and c¢».

Solution:

A—b, 8.0-6.0
=92
5 =250 MW

a) ) e =
! 2 % 0.004

P;, = P, — P;; =550—250 = 300 MW

o)
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curve iv) Heat rate curve

June 2016, June 2015

_1 o
b) Pm:/1 A 10-6 - 500 MW
2C, 2x0.004
P,, = P, — P;, =1300-500= 800 MW
| A—b,
% For = 2t ¥
8.0—-b,
From (a) 300 = ¢
2¢c;
0.0-b,
From (b)  800= ! -
2C;
Solving we get b,=6.8
¢y =0.002
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Module 5

1.  With the help of a flowchart, explain the method of finding the transient
stability ofa given power system, based on Runge-Kutta method.
June 2015, Dec.2015

Runge - Kutta method

In Range - Kutta method, the changes in dependent variables are calculated from
a given set of formulae, derived by using an approximation, to replace a truncated
Taylor’s series expansion. The formulae for the Runge - Kutta fourth order

approximation. for solution of two simultaneous differential equations are given below:
. dx .
Given — = fy (X, y.t)
dt

dy ”
— =1yt
dt 4 Y-t

Starting from initial values Xo. yo. to and step size /., the updated values are

X1 =Xp + (k1 + 2ko + 2ks + ky)

&

6
1

Y1 =Yoo+ g (1 + 21 + 213 + 1y)

where k; = fx (X0, Yo .to) h

. k / h
ko = fx (.\'0 +T] ._\'O+Tl.f0 +T} h

. k., L; h
ks = fx (.\'0+—,)-—, Yortres .r0+—] h

ks=1fx xo+Kks.yo+ 13, to+h) h

Igp= fy (X0, Yo- to) h

Iy = fy (xo + ks, Yo + Is.to+ h) h
The two first order differential equations to be solved to obtain solution for the swing
equation are:

d§=

—=®
dt
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do P, P, - P, sind

a M M
Starting from initial value &y, @y, ty and a step size of At the formulae are as follows
ki = mg At
[P, - P, sing
ll = m max Sin O:I A[
[ M
ky=|w, + [—' At
2 0 )
: | 1 a
P - P sin|§, +—
)
I = — At
M
L J
ka=|@) +=| At
2
£ | " _
P —Pe sm[&o + —"—J
)
I3 = - At
M
k4=(_0)o+l3)At )
" [P, - P, sin(d, + & )} A
! M

61-——50+% [k]+2k2+2k3+k4]

MO1=0)+ % [I] a7 2]2 + 2[3 + 14]
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2. With the help of a flowchart, explain the method of finding the transient stability of
a given power system, based on modified Euler’s method.
June 2015, Dec 2016, Dec 2015, June 2017, June 2016
Modified Euler*s method:

Eulers method is one of the easiest methods to program for solution of differential equations
using a digital computer . It uses the Taylor*s series expansion, discarding all second—order
and higher—order terms. Modified Euler*s algorithm uses the derivatives at the beginning of
a time step, to predict the values of the dependent variables at the end of the step (t1 = t0
+At). Using the predicted values, the derivatives at the end of the interval are computed. The
average of the two derivatives is used in updating the variables.

Consider two simultaneous differential equations:

ﬁ = f.(x,y.1)
dt '
@ _ fo(x,v,1)
d '

Starting from initial values x0, y0, t0 at the beginning of a time step and a step size h we
solve as follows:

Let
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. Ix
Dx = tx(_XO-yO-tO) = '(_'
dt|,

= . dy
Dy = fy(Xo.,YO-to) o
dt

xP=x,+D_h _
» Predicted values
Y=y, D, h

Dyp= d_\ = fx(xp~yp-tl)
dt|p
dy .
Dp=—| = ty(xp.)ptl)
dt |p
D_+ D,
x,:xo+( = Ll
‘D, +D,,
Yi=Yo+ ‘ 5 — |h

x1and yz1 are used in the next iteration. To solve the swing equation by Modified Euler*s
method, it is written as two first order differential equations:

do

—=w

dt

dw P, P, — P, sino
d M M

Starting from an initial value _o, _oat the beginning of any time step, and choosing a step
size_t s, the equations to be solved in modified Euler*s are as follows:

Departmentof EEE, SIBIT Page 85



PSA2 | 18EE71

—ree | =D1—0)0

dt |,

do| __ B, — P, sind,
dt |, TR M

d—b‘ = Dlp = (!)p

dt |p

dw P.—P_ sind
—| =Dgp=

dt |p M

01 and ®; are used as initial values for the successive time step. Numerical errors are
introduced because of discarding higher—order terms in Taylor’s expansion. Errors can be
decreased by choosing smaller values of step size. Too small a step size, will increase
computation, which can lead to large errors due to rounding off. The Runge- Kutta

method which uses higher—order terms is more popular.

3. Explain the solution of swing equation by point-by-point method.
June 2017,June 2015,Dec 2016, Dec 2015
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In this method the accelerating power during the interval is assumed constant at its value
calculated for the middle of the interval.

The desired formula for computing the change in d during the n" time interval is
Ddn=Ddn-1+[(Dt)?/M] Pa(n-1)

where,

D d n = change in angle during the n™ time interval

D d n-1 = change in angle during the (n-1)"time interval

D t= length of time interval

Pa(n-1)= accelerating power at the beginning of the nthtime interval

Due attention is given to the effects of discontinuities in the accelerating power Pa which
occur, for example, when a fault is applied or removed or when any switching operation
takes place. If such a discontinuity occurs at the beginning of an interval, then the average
of the values of Pa before and after the discontinuity must be considered. Thus, in
computing the increment of angle occurring during first interval after a fault is applied at
t=0, the above equation becomes:

D d 1 =[(D t)?/M] Pa0+/2

where Pa0+ is the accelerating power immediately after the occurrence of the fault.

If the fault is cleared at the beginning of the m™interval, then for this interval,

Pa(m-1) = 0.5 [Pa(m-1)" + Pa(m-1) *]

Where Pa(m-1) is the accelerating power before clearing and Pa(m-1) * is that immediately

after clearing the fault.. If the discontinuity occurs at the middle of the interval, no special
treatment is needed.
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